Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(4): 85, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502238

RESUMO

KEY MESSAGE: A stable QTL qSW_Gm10 works with a novel locus, qSW_Gm01, in a synergistic manner for controlling slow-wilting traits at the early vegetative stage under drought stress in soybean. Drought is one of the major environmental factors which limits soybean yield. Slow wilting is a promising trait that can enhance drought resilience in soybean without additional production costs. Recently, a Korean soybean cultivar SS2-2 was reported to exhibit slow wilting at the early vegetative stages. To find genetic loci responsible for slow wilting, in this study, quantitative trait loci (QTL) analysis was conducted using a recombinant inbred line (RIL) population derived from crossing between Taekwangkong (fast-wilting) and SS2-2 (slow-wilting). Wilting score and leaf moisture content were evaluated at the early vegetative stages for three years. Using the ICIM-MET module, a novel QTL on Chr01, qSW_Gm01 was identified, together with a previously known QTL, qSW_Gm10. These two QTLs were found to work synergistically for slow wilting of the RILs under the water-restricted condition. Furthermore, the SNP markers from the SoySNP50K dataset, located within these QTLs, were associated with the wilting phenotype in 30 diverse soybean accessions. Two genes encoding protein kinase 1b and multidrug resistance-associated protein 4 were proposed as candidate genes for qSW_Gm01 and qSW_Gm10, respectively, based on a comprehensive examination of sequence variation and gene expression differences in the parental lines under drought conditions. These genes may play a role in slow wilting by optimally regulating stomatal aperture. Our findings provide promising genetic resources for improving drought resilience in soybean and give valuable insights into the genetic mechanisms governing slow wilting.


Assuntos
Soja , Locos de Características Quantitativas , Mapeamento Cromossômico , Soja/genética , Fenótipo , Secas
2.
Mol Breed ; 43(5): 42, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37309390

RESUMO

Drought stress is the major environment constraint on soybean yield, and a variety of pathways underlie drought tolerance mechanisms. Transcriptomic profiling of two soybean cultivars, drought-tolerant SS2-2 and drought-sensitive Taekwang, was performed under normal and drought conditions to identify genes involved in drought tolerance. This revealed large differences in water loss during drought treatment. Genes involved in signaling, lipid metabolism, phosphorylation, and gene regulation were overrepresented among genes that were differentially expressed between cultivars and between treatments in each cultivar. The analysis revealed transcription factors from six families, including WRKYs and NACs, showed significant SS2-2-specific upregulation. Genes involved in stress defense pathways, including MAPK signaling, Ca2+ signaling, ROS scavenging, and NBS-LRR, were also identified. Expression of non-specific phospholipases, phospholipase D, and PHOSPHATIDYL INOSITOL MONOPHOSPHATE 5 KINASE (PIP5K), which act in the lipid-signaling pathway, was greatly increased in SS2-2. The roles of PIP5K in drought stress tolerance were confirmed in Arabidopsis thaliana. Arabidopsis pip5k mutants had significantly lower survival rates under drought stress than wild-type plants. This study identified additional elements in the mechanisms used by plants to protect themselves from drought stress and provides valuable information for the development of drought-tolerant soybean cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01385-1.

3.
Genes Genomics ; 45(7): 911-919, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37202555

RESUMO

BACKGROUND: Flowering time is an important crop trait. Mungbean flowers do not flower simultaneously, leading to asynchronous pod maturity and laborious multiple harvests per individual plant. The genomic and genetic mechanisms of flowering in mungbean are largely unknown. OBJECTIVE: This study sought to discover new quantitative trait loci (QTLs) for days to first flowering in mungbean using a genome-wide association study (GWAS). METHODS: In total, 206 mungbean accessions collected from 20 countries were sequenced using genotyping by sequencing. A GWAS was conducted using 3,596 single nucleotide polymorphisms (SNPs) using TASSEL v5.2. RESULTS: Seven significant SNPs were associated with first flowering time. Based on the linkage disequilibrium (LD) decay distance, LD block was determined from upstream to downstream of each SNP up to 384 kb. The lead SNP (Chr2_51229568) was located in the DFF2-2 locus. Syntenic analysis between mungbean and soybean revealed the DFF2-2 locus had collinearity with soybean genomic regions containing flowering-related QTLs on Gm13 and Gm20. CONCLUSION: Identification of flowering-related QTLs and SNPs is important for developing synchronous pod maturity and desirable flowering traits in mungbean.


Assuntos
Estudo de Associação Genômica Ampla , Vigna , Mapeamento Cromossômico , Vigna/genética , Locos de Características Quantitativas/genética , Desequilíbrio de Ligação
4.
Plant Sci ; 313: 111085, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763870

RESUMO

Soybean, a glycophyte that is sensitive to salt stress, is greatly affected by salinity at all growth stages. A mapping population derived from a cross between a salt-sensitive Korean cultivar, Cheongja 3, and a salt-tolerant landrace, IT162669, was used to identify quantitative trait loci (QTLs) conferring salt tolerance in soybean. Following treatment with 120 mM NaCl for 2 weeks, phenotypic traits representing physiological damage, leaf Na+ content, and K+/Na+ ratio were characterized. Among the QTLs mapped on a high-density genetic map harboring 2,630 single nucleotide polymorphism markers, we found two novel major loci, qST6, on chromosome 6, and qST10, on chromosome 10, which controlled traits related to ion toxicity and physiology in response to salinity, respectively. These loci were distinct from the previously known salt tolerance allele on chromosome 3. Other QTLs associated with abiotic stress overlapped with the genomic regions of qST6 and qST10, or with their paralogous regions. Based on the functional annotation and parental expression differences, we identified eight putative candidate genes, two in qST6 and six in qST10, which included a phosphoenolpyruvate carboxylase and an ethylene response factor. This study provides additional genetic resources to breed soybean cultivars with enhanced salt tolerance.


Assuntos
/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Locos de Características Quantitativas/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Variação Genética , Genótipo , Fenótipo
5.
Sci Rep ; 10(1): 17414, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060755

RESUMO

Cytosine methylation in genomic DNA affects gene expression, potentially causing phenotypic variation. Mungbean, an agronomically and nutritionally important legume species, is characterized by nonsynchronous pod maturity, resulting in multiple harvest which costs extra time and labor. To elucidate the epigenetic influences on synchronous pod maturity (SPM) in mungbean, we determined the genome-wide DNA methylation profiles of eight mungbean recombinant inbred lines (RILs) and their parental genotypes, and compared DNA methylation profiles between high SPM and low SPM RILs, thus revealing differentially methylated regions (DMRs). A total of 3, 18, and 28 pure DMRs, defined as regions showing no significant correlation between nucleotide sequence variation and methylation level, were identified in CpG, CHG, and CHH contexts, respectively. These DMRs were proximal to 20 genes. Among the 544 single nucleotide polymorphisms identified near the 20 genes, only one caused critical change in gene expression by early termination. Analysis of these genome-wide DNA methylation profiles suggests that epigenetic changes can influence the expression of proximal genes, regardless of nucleotide sequence variation, and that SPM is mediated through gibberellin-mediated hormone signaling pathways. These results provide insights into how epialleles contribute to phenotypic variation and improve SPM in mungbean cultivars.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Epigênese Genética , Vigna/crescimento & desenvolvimento , Produtos Agrícolas/genética , Metilação de DNA , Genes de Plantas , Polimorfismo de Nucleotídeo Único , Vigna/genética
6.
ACS Cent Sci ; 5(4): 688-699, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31041389

RESUMO

Quantitatively understanding the self-assembly of amphiphilic macromolecules at liquid-liquid interfaces is a fundamental scientific concern due to its relevance to a broad range of applications including bottom-up nanopatterning, protein encapsulation, oil recovery, drug delivery, and other technologies. Elucidating the mechanisms that drive assembly of amphiphilic macromolecules at liquid-liquid interfaces is challenging due to the combination of hydrophobic, hydrophilic, and Coulomb interactions, which require consideration of the dielectric mismatch, solvation effects, ionic correlations, and entropic factors. Here we investigate the self-assembly of a model block copolymer with various charge fractions at the chloroform-water interface. We analyze the adsorption and conformation of poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) and of the homopolymer poly(2-vinylpyridine) (P2VP) with varying charge fraction, which is controlled via a quaternization reaction and distributed randomly along the backbone. Interfacial tension measurements show that the polymer adsorption increases only marginally at low charge fractions (<5%) but increases more significantly at higher charge fractions for the copolymer, while the corresponding randomly charged P2VP homopolymer analogues display much more sensitivity to the presence of charged groups. Molecular dynamics (MD) simulations of the experimental systems reveal that the diblock copolymer (PS-b-P2VP) interfacial activity could be mediated by the formation of a rich set of complex interfacial copolymer aggregates. Circular domains to elongated stripes are observed in the simulations at the water-chloroform interface as the charge fraction increases. These structures are shown to resemble the spherical and cylindrical helicoid structures observed in bulk chloroform as the charge fraction increases. The self-assembly of charge-containing copolymers is found to be driven by the association of the charged component in the hydrophilic block, with the hydrophobic segments extending away from the hydrophilic cores into the chloroform phase.

7.
Nat Commun ; 9(1): 624, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434200

RESUMO

Nanocarrier administration has primarily been restricted to intermittent bolus injections with limited available options for sustained delivery in vivo. Here, we demonstrate that cylinder-to-sphere transitions of self-assembled filomicelle (FM) scaffolds can be employed for sustained delivery of monodisperse micellar nanocarriers with improved bioresorptive capacity and modularity for customization. Modular assembly of FMs from diverse block copolymer (BCP) chemistries allows in situ gelation into hydrogel scaffolds following subcutaneous injection into mice. Upon photo-oxidation or physiological oxidation, molecular payloads within FMs transfer to micellar vehicles during the morphological transition, as verified in vitro by electron microscopy and in vivo by flow cytometry. FMs composed of multiple distinct BCP fluorescent conjugates permit multimodal analysis of the scaffold's non-inflammatory bioresorption and micellar delivery to immune cell populations for one month. These scaffolds exhibit highly efficient bioresorption wherein all components participate in retention and transport of therapeutics, presenting previously unexplored mechanisms for controlled nanocarrier delivery.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Nanoestruturas/química , Animais , Portadores de Fármacos/química , Feminino , Camundongos , Micelas , Polímeros/química
8.
Soft Matter ; 13(28): 4830-4840, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28470275

RESUMO

Solid Polymer Electrolytes (SPEs) consisting of ternary blends of charged polymer, neutral polymer, and plasticizer or salt have received much interest for their low volatility and high flexibility of polymers with ion-selective conductivity of the charge-carrying backbone. It has been shown that in these polyelectrolyte blends, where the dielectric constant is relatively low, ionic correlations can significantly influence the miscibility, inducing phase separation even at negative values of χN. Here we present a comprehensive study of phase behavior and interfacial segregation upon the addition of a tertiary component in blends of charged and neutral homopolymers. Using a hybrid of self-consistent field and liquid state theories (SCFT-LS), we investigate the bulk miscibility and the distribution of ions across the interface, looking at interfacial adsorption and selectivity of the minority component. We demonstrate that the competition between ionic correlations and ion entropy induces complex charge-dependent selectivity that can be tuned by the value of Γ, the ionic correlation strength. We show that charge interactions can have a pronounced effect on the interfacial width and tension, especially at low χN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...